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Cochlear Electrical Model for the Interpretation of Tinnitus
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Abstract - 1f the model for the auditory system from ear canal to
the auditory cortex is established, it would be great
contributions to the diagnosis and treatment of tinnitus
patients. In this study, existing models for the auditory system
were examined, and a model which can best explain tinnitus
phenomena was established. In a new model, reticular lamina,
thin fluid layer which transmits energy in a cochlear, was
assumed as a mass and the components for the stiffness and
control were added to the model. Mathematical interpretation
was performed to compare the zeros and poles of the transfer
function between existing models and newly designed model.
The results showed that the values of zeros were lower than
that of the poles which coincides with the results obtained from
animal neural data.
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I. INTRODUCTION

To understand the exact mechanisms of the processes
about sound transmission in the auditory system, theoretical
and quantitative characteristics of the system should be
established. One of the ways to achieve such goal is through
the electrical and/or mechanical modeling [1-3]. That is, if
we could find the model for the auditory system, from
auricles to the auditory cortex, it could be used as a useful
tool for the understanding of pathological disorders. Also, it
may be possible to establish the protocols for an appropriate

diagnosis and treatment for the patients.
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Tinnitus is the condition that one feels the sound without
external sound sources even in the completely silent
environment [4]. Approximately 95% of populations have
experienced the tinnitus and almost 20% of populations have
a severe attack of titnnitus which causes intense
inconvenience in normal life. In an extreme case, tinnitus
would be the cause of depression. Therefore, it calls for the
development of quantitative methods for the diagnosis and
treatment of tinnitus.

Objectives of this study were to establish a model, which
could be used as a reference for the diagnosis and treatment
of the tinnitus. Existing models for the auditory systems
were examined, then a model that can best explain tinnitus
phenomena was established. Mathematical interpretation
was performed to compare the zeros and poles of the transfer
function between existing model and newly designed model.
This study will be extended to an animal experiment to
verify the validity of the designed electrical model and to
demonstrate the effect of electrical stimulation for the

treatment of tinnitus.

II. COCHLEAR ELECTRICAL MODEL

Applied acoustic pressure to the Reissner's membrane
induces the vibration of basilar membrane, and causes the
energy flow in the cochlea based on the forces, which act as
sinewave function. To understand the precise function of the
inner ear, followings should be understood first: the

mechanisms of the basilar membrane and reticular lamina,
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an independent movement of the tectorial membrane, a force
generation in the inner and outer hair cells, an influence of
stereocillia’s twist and bend, an effect of fluid flow from the
vestibular to the scala tympani, and a nonlinear relationship
with each organ.

A new cochlear model shown in Fig. 1 was established
based on the Allen’s two-dimensional inner ear model.
Reticular lamina was regarded as a mass, which generates
the shear force to the hair cells. It also amplifies the
transmission of phase to the tectorial membrane [5]. It
implies that the reticular lamina could form the shear force
to the hair cells and amplify the phase of transmission to the
tectorial membrane.

Movement of mass is expressed as X = a sin (wt), where a
and o are an amplitude of oscillation and an angular
velocity, respectively. Therefore, it could be expressed as
below, where K is a spring constant.

v=awcos(wt) = awsin(wt +17/2)

(D
F =-KX = aK sin(wt) = aK sin( wt + 17)
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Fig. 1. Two-dimensional cochlear electrical model

considering reticular lamina as a mass.
Vium © voltage of basilar membrane, mp : mass of basilar

membrane, mg; : mass of reticular lammina, mt : mass of

tectorial membrane, Ky : stiffness of basilar membrane,
Ko : stiffness of outer hair cell, ron : damping of outer hair
cell, G : gain which transforms vertical motion to radial
shear motion, K¢ : stiffness of cilia, rc : damping of cilia,
Ky stiffness of inner hair cell, Kt : elastic connection to the

scala wall, rr : damping loss across Kr

Changes in velocity and force cause the displacement of
the membrane by m/2 and w, respectively. Since the
displacement of above w2 is generated from the negative
forces, vibration energy would be reduced. If the reticular
lamina was assumed as a layer, amplification occurs when
either bundle of hair cells moves in the opposite side or
voltage responses of outer hair cells appear in reverse
direction. If the contraction of outer hair cell provides the
cochlear amplification, there must be the special processes,
which change the phase relationship among basilar

membrane, reticular lamina, and outer hair cells.

III. MATHEMATICAL INTERPRETATION

Transfer function, which relates the voltage values
measured at the stereo cillia to the basilar membrane was
examined with existing animal neural tuning data. Also,
basilar membrane impedances were measured to justify the
numerical formula.

Characteristics of transfer function regarding poles and
zeros were expressed as a second order equation, and
mathematical interpretation was performed to compare the
zeros and poles of a transfer function. As can be seen from
Fig. 2, the spectral zeros are systemically located below the
characteristic frequencies and the poles are located above the

characteristic frequencies [6, 7].

Characteristics of the Transfer Function
Transfer function was calculated as follows to prove the

properties of the established model.

Hy(x,)=G S(my +mg,) +ry +(ky +hyy)/ s 2)
s(my +my )+ (v, +r)H(ky, th, Yk )/ s
wZP(x):(kc +kT+k1H)/(mT+mRL) )
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Fig. 2. Poles and zeros of the neural tuning curve calculated

from the model at the characteristic frequency of 3.5kHz.

8,0 = Sy IOy ey o w g ] )
,(x)= %( ) [k oty + k) (my +mg)) (6)
, = O ™

w

z
Radian frequencies W, and @, are the pole and zero
frequencies.

Including the damping ratio { , normalizing variables
w,, W,, {,,and {, are physically meaningful since
they could be identified from the transfer function spectrum.
The pole frequency appears to be above the characteristic
frequency, which could not be observed in normal tuning

data.

Basilar Membrane Impedance

One of the critical points in macromechanics is the basilar
membrane impedance, which is generally assumed to be the
form of
Zyy =Ky(x)/s+R(x)+sM, ®)
which would be equivalent to the following equation derived
from the model shown in Fig. 1.

A TR AL TC TN )

Koty oS

Resistance to the shearing force R(x) could be calculated

with the use of the viscous fluid of viscosity, the width of
upper plate, and the distance between upper and lower plate
based on the viewpoint of fluid mechanics.

According to the definition of the transduction filter,

basilar membrane could be rewritten as follow:

kOH EBH

kou*1onld

+& E 4 E;(X)HT(X,S)
s k.

cilia. damping frequency is

W. =ko/7r.. Also, W.) W, given for W< W,

Z, (x,8) =s(my, +my, +my,)+K,/s+

(10)

where the defined as

(@, . Since the constant ‘SI’C /kc| =w/w, is much

lower than 1, it could be ignored in (10). From these
processes, basilar membrane could be found as follows:
k.G (x)
(ke +hy +ky,)
(k +k,)0

x%(mr"'mm)"'rr"' P

Z, =s(m;+my+m, )+
(11)

Basilar membrane could be expressed as a second order
equation with the use of this impedance. Then, it might be

possible to change each value, such as

ke =(my +mp )w’r(1-1/y?) (12)

W /W, =&(m, +my )w,(1=1/y*)/ni (13)

By substituting each material frequency to (12) and (13), the
range of W, /W, could be calculated. If the result and
preceding assumption is compared, it could be possible to

confirm the validity of the new model.
IV. RESULTS AND DISCUSSION

New cochlear electrical model was proposed to interpret

the tinnitus phenomena. Zero and pole frequencies, which
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were calculated mathematically through the transfer function,
justified the suggested assumption.
From the transfer function in equation (2), Hr could be

expressed as

fr =2y +Kyy) (my +my,) (14)

fr = 2m(ke +hyy k) my +my)  (15)

where f,> fp,since (k. +k, +k,)> (k, +k;,).

The significance of this result is a spectral zero, which is
required to account for the difference between the
mechanical and neural response. A spectral zero was located
below the characteristic frequency and a pole was located
above the characteristic frequency [6]. From equation (15),
approximations of wc/wp could be found with the value
my, ignored since it’s so small. According to the above
equation, it could be found that W, /w, >0.0124w, .
Hence for the approximation in the formula is justified.

From this study, complex and nonlinear characteristics of
the inner ear for sound transmission could be accounted, and

the new model, which could be applied to explain tinnitus

was proposed.
V. CONCLUSIONS

In a new model, reticular lamina, thin fluid layer which
transmits energy in a cochlear, was assumed as a mass and
the components for the stiffness and control were added to
the model. The results showed that the zeros appeared to
have lower values than that of the poles, which coincided
with the results obtained from animal neural data. Also,
commonly assumed model parameters showed consistencies
with the model suggested from this study. Moreover, from
the mathematical interpretation, which compares the zeroes
and poles of the transfer function between existing model

and a new model, similarities were found which demonstrate

the appropriateness of a new model.
This study will be extended to an animal experiment to
verify the validity of a new model. It could possibly suggest

a new viewpoint for the diagnosis and treatment of tinnitus.
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